
RESTful Web
Services
Lecture 10



Assignment Two

§ Assignment 2 is at 5pm, Friday, Week 13 
(21/5/2021)
§ The assignment involves development of a 

Web application
§ You must re-use and develop your Node.js 

server from assignment one
§ You must use the port number given to you in 

week 1; do not use port 80 or any                
other port number



§ Your application will be required to parse and 
process XML AND JSON documents

§ Full details of the requirements are explained in 
the assignment question
§ Also check the QandA regularly

§ All students should submit their assignment on 
LMS AND have an identical application in their 
account on ceto, according to the instructions in 
the assignment question

§ Late submission penalties will apply - refer to the 
unit guide and the assignment question

Assignment Two



4

§ In the scheme of what we are doing in this 
unit:
n We are studying how to use XML / JSON as 

important Internet technologies for solutions in 
different areas

n It is likely that any work in this industry will 
involve the use of Web Services

§ This week's lecture is aimed at learning 
about RESTful Web Services

Learning Objectives



Learning Objectives
§ Learn why RESTful Web Services are an 

important development in Internet 
technologies

§ Learn about Rest Architecture
§ Learn about the basics of RESTful Web 

Services
§ What is a resource?
§ Messages and Addressing
§ Statelessness and Caching
§ Security

5



§ Overview: setting the scene
§ The REST architecture
§ RESTful Web Services
§ Components of RESTful Web Services
§ The role of JSON

6

Lecture Outline



§ "Web resources" were first defined on the 
World Wide Web as documents or files 
identified by their Uniform Resource 
Location (URL)

§ Today we have a much more generic and 
abstract definition encompassing every 
thing or entity that can be identified, 
named, addressed or handled, in any way 
whatsoever, on the Web

7

Introduction



§ RESTful Web services are one way of 
providing inter-operability between 
computer systems on the Internet

§ REST-compliant Web services allow 
requesting systems to access and 
manipulate textual representations of Web 
resources using a uniform and pre-defined 
set of stateless operations

8

Introduction



§ The term REST was introduced and 
defined in 2000 by Roy Fielding in his 
doctoral dissertation

§ Fielding used REST to design HTTP 1.1 
and Uniform Resource Identifiers (URI)

9

Introduction



§ REST refers to a network of Web 
resources (a virtual state-machine) where 
the user progresses through the application 
by selecting links and operations such as 
GET or DELETE
§ i.e. transitioning through states

§ This results in the next resource 
(representing the next state of the 
application) being transferred to the user 
for their use

10

Introduction



§ In a RESTful Web service, requests made 
to a resource's URI will elicit a response 
that may be in XML, HTML, JSON or some 
other defined format

§ The response may confirm that some 
alteration has been made to the stored 
resource, and it may provide hypertext links 
to other related resources or collections of 
resources

11

Introduction



§ Using HTTP, the kind of operations 
available include those pre-defined by the 
HTTP verbs GET, POST, PUT, DELETE 
and so on

§ By making use of a stateless protocol and 
standard operations, REST systems aim for 
fast performance, reliability, and scalability
§ This can be achieved by re-using components 

that can be managed and updated without 
affecting the system as a whole, even while it 
is running

12

Introduction



§ REST is an acronym for REpresentational State 
Transfer

§ REST is an architectural style for networked 
applications
§ It can be considered a collection of principles or a set 

of Web standards, which uses HTTP
§ The concept of REST revolves around a 

‘resource’ where:
§ Every component is a resource, and
§ A resource is accessed by a common interface using 

HTTP standard methods

13

What is REST Architecture?



§ In REST architecture, a REST Server 
simply provides access to resources and a 
REST client accesses and modifies the 
resources

§ Here each resource is identified by a URI
§ REST uses various formats to represent a 

resource like text, HTML, JSON, XML
§ JSON is the most popular and commonly used

14

What is REST Architecture?



§ The REST architecture describes six 
constraints:
§ Uniform interface – URI must uniquely identify 

the resource
§ Stateless – any necessary state to handle a 

request is in the request itself (querystring, 
body, headers) or the response itself (headers, 
status, body)

§ Cacheable – to prevent clients re-using stale or 
inappropriate data in further requests

15

What is REST Architecture?



§ The REST architecture describes six 
constraints (cont.):
§ Client-Server – separation of responsibilities; 

the client is not concerned about data storage, 
and the server is not concerned about user 
interface/state

§ Layered system – the client is unaware if it is 
connected to the end server or an intermediary

§ Code on demand (optional) – allows server to 
temporarily extend client functionality by 
transferring executable logic; eg: client-side 
scripts and applets

16

What is REST Architecture?



§ Difference between resource and state:
§ Resource or resource state is data that 

defines the resource representation
§ This is constant across every client who 

requests it
§ State or application state is data for the 

current session or request that is required by 
the server
§ This could vary by client and per request

17

What is REST Architecture?



18

REST: HTTP Methods
§ The following five HTTP methods are 

commonly used in REST-based 
architecture:
§ GET - Read only access to a resource
§ PUT - Used to create a new resource
§ DELETE - Used to remove a resource
§ POST - Used to update/modify an existing 

resource or create a new resource
§ OPTIONS - Used to get the supported 

operations on a resource



19

§ Web services based on REST Architecture are 
known as RESTful Web Services

§ Such web services use HTTP methods to 
implement the concept of REST architecture

§ A RESTful Web Service usually defines a 
Uniform Resource Identifier (URI), where a 
service provides resource representation such 
as JSON and set of HTTP Methods

RESTful Web Services



20

RESTful Web Services
§ A RESTful Web Service is a collection of open 

protocols and standards for exchanging data 
between applications or systems

§ Software applications, written in various 
programming languages and running on various 
platforms, can use RESTful Web Services to 
exchange data over computer networks in a 
manner similar to inter-process communication 
on a single computer



21

§ In REST architecture, everything is a resource
§ These resources can be text files, html pages, 

images, videos or dynamic business data

§ A RESTful Web Server simply provides access 
to resources

§ A RESTful Web Client accesses and modifies 
the resources

RESTful Web Services:
What is a Resource?



22

§ Each resource is identified by URIs
§ REST uses various representations to 

represent a resource like text, JSON, 
XML
§ JSON is the most popular representations of 

resources

RESTful Web Services:
What is a Resource?



23

§ A resource in REST is similar to an Object in 
Object Oriented Programming or similar to an 
Entity in a Database

§ Once a resource is identified, its representation 
must be decided upon, using a standard format 
so that a server can send the resource (in one 
of the previously mentioned formats), and the 
client can understand the same format

RESTful Web Services:
Representation of Resources



24

§ In REST, there is no restriction on the format of 
a resource representation

§ One client may ask for a JSON representation 
of a resource, whereas another client may ask 
(the same server) for an XML representation of 
the same resource, and so on

§ It is responsibility of the REST server to pass 
the client the resource in the format that the 
client understands or requested

Characteristics of a Good
Resource Representation



25

§ When designing a representation format for a 
resource in a RESTful Web Service, the 
following are important considerations:
§ Understandability: Both Server and Client should be 

able to understand and utilize the representation 
format of the resource

§ Linkability: A resource can have a linkage to another 
resource, and a format should be able to handle 
such situations

§ Completeness: the format should be able to 
represent a resource completely

Characteristics of a Good
Resource Representation



26

§ RESTful Web Services make use of HTTP 
protocol as a medium of communication 
between client and server

§ A client sends a message in the form of a HTTP 
Request and server responds in the form of a 
HTTP Response

§ This technique is termed “Messaging”
§ These messages contain message data and 

metadata (i.e. information about the message itself)

RESTful Web Services:
Messages



27

§ HTTP Request message has 5 major parts:
§ Verb – Indicates an HTTP method such as GET, POST, 

PUT, DELETE, OPTIONS
§ URI – Contains the URI to identify the resource on the 

server
§ HTTP Version – Indicates the HTTP version
§ Request Header – Contains metadata for the HTTP 

Request message as key-value pairs; eg: browser type, 
format supported by client, …

§ Request Body – Message content or resource 
representation (resource can contain another resource 
format which should be able to represent simple as well 
as complex structures of a resource)

RESTful Web Services:
Messages



28

§ HTTP Response message has 4 parts:
§ Status/Response Code – Indicates Server status for 

the requested resource; eg: 404 (resource not found) 
and 200 (ok)

§ HTTP Version – Indicates the HTTP version
§ Response Header – Contains metadata for the HTTP 

Response message as key-value pairs; eg: content 
length, content type, response date, server type, etc.

§ Response Body – Response message content or 
resource representation

RESTful Web Services:
Messages



29

§ Addressing refers to locating a resource or 
multiple resources existent on a server
§ This is analogous to locating a postal address 

for a person
§ Each resource in REST architecture is identified 

by its URI
§ A URI is of following format:

<protocol>://<service-name>/ 
<ResourceType>/<ResourceID>

RESTful Web Services:
Addressing



30

§ The purpose of an URI is to locate a 
resources on the server hosting the web 
service

§ Another important attribute of a request is 
the VERB, which identifies the operation to 
be performed on the resource (achieved by 
the HTTP methods)

RESTful Web Services:
Addressing



31

§ Important points to be considered:
§ Use Plural Nouns: to define resources; eg: the 

example that follows uses users to identify 
users as a resource

§ Avoid using spaces: instead use underscore 
(_) or hyphen (-) when using a long resource 
name

§ Use lowercase letters: although URI is case-
insensitive, it is good practice to keep the URI 
in lower case letters only

Constructing a Standard URI



32

§ Important points to be considered (cont.):
§ Maintain Backward Compatibility: as a Web 

Service is a public service, a URI once made 
public should always be available
§ In case the URI gets updated, redirect the older 

URI to new URI using HTTP Status code 300
§ Use an HTTP Verb: always use HTTP Verb like 

GET, PUT, and DELETE to do the operations 
on the resource
§ It is not good to use operations names in the URI

Constructing a Standard URI



33

§ Important points to be considered (cont.):
§ For example, the following is a poor URI to 

fetch a user:
http://localhost:8080/UserManagement/rest/UserService
/getUser/1

§ The following is an example of a good URI to 
fetch a user:

§ http://localhost:8080/UserManagement/rest/UserService
/users/1

Constructing a Standard URI



34

§ As per REST architecture, a RESTful Web 
Service should not keep a client state on 
the server

§ This restriction is called statelessness
§ It is the responsibility of the client to pass 

its context to the server and then the 
server can store this context to process a 
client's further request

RESTful Web Services:
Statelessness



35

§ For example, a session maintained by a 
server is identified by a session identifier 
passed by the client

§ RESTful Web services should adhere to 
this restriction

§ In RESTful Web Services, web service 
methods do not store any information from 
the client they are invoked from

RESTful Web Services:
Statelessness



36

§ Web services can treat each method 
request independently

§ Web services do not need to maintain a 
client's previous interactions
§ This simplifies application design

§ As HTTP is itself a stateless protocol, 
RESTful Web Services work seamlessly 
with HTTP protocol

RESTful Web Services:
Advantages of Statelessness



37

§ Web service servers need to get:
§ Extra client information in every request
§ The client's state in order to serve the client 

interaction

RESTful Web Services:
Disadvantages of Statelessness



38

§ Caching refers to storing the server 
response in the client so that a client does 
not need to make a server request for the 
same resource again and again

§ A server response should have information 
about how particular caching is to be done, 
so that a client caches a server response 
for a period of time OR never caches the 
server response

RESTful Web Services:
Caching



39

§ Following are the headers by which a server 
response can configure a client's caching:
1. Date – Date and Time of when the resource was 

created
2. Last Modified – Date and Time of when the resource 

was last modified
3. Cache-Control – Primary header to control caching 

(see next slide)
4. Expires – Expiration date and time of caching
5. Age Duration in seconds from when          resource 

was fetched from the server

RESTful Web Services:
Caching



40

1. Public – Indicates that the resource is cacheable by any 
component

2. Private – Indicates that the resource is cacheable by 
only client and server, no intermediary can cache the 
resource

3. no-cache/no-store – Indicates that the resource is not 
cacheable

4. max-age – Indicates that caching is valid up to max-age 
in seconds (after this, the client has to make another 
request)

5. must-revalidate – Indication to the server to re-validate 
the resource if max-age has passed

RESTful Web Services:
Cache-Control Header Directives



41

§ Always keep static contents cacheable, 
with expiration date of 2 to 3 days
§ For example images, css, JavaScript, etc.

§ Never set expiration date too high
§ Dynamic contents should be cached for a 

few hours only

RESTful Web Services:
Caching Best Practices



42

§ RESTful Web Services utilize HTTP, so it is 
very important to safeguard the URL paths 
of a RESTful Web Service
§ Just like it is important to secure a typical 

website

§ Following are the best practices that 
should be considered when designing a 
RESTful Web Service:

RESTful Web Services:
Security



43

§ Validation – Validate all inputs on the server. 
Protect your server against SQL or NoSQL 
injection attacks

§ Session based authentication – Use session 
based authentication to authenticate a user 
whenever a request is made to a Web Service 
method

§ No sensitive data in URL – Never use 
username, password or session token in the 
URL; these values should be passed to the 
Web Service via the POST method

RESTful Web Services:
Security



44

§ Restriction on Method execution – Allow 
restricted use of methods like GET, POST, 
DELETE (GET method should not be able to 
delete data)

§ Validate Malformed XML/JSON – Check for 
well formed input passed to a Web Service 
method

§ Throw generic Error Messages – A Web 
Service method should use HTTP error 
messages
§ Eg: 403 to show access forbidden, etc.

RESTful Web Services:
Security



45

§ Always use standard HTTP codes when 
returning HTTP response to the client

§ Some codes you may not be familiar with:
§ 201 CREATED, when a resource is successfully 

created using POST or PUT request (returns a link to 
newly created resource using location header)

§ 204 NO CONTENT, when a response body is empty 
(for example: a DELETE request)

§ 304 NOT MODIFIED, used to reduce network 
bandwidth usage in case of conditional GET requests 
(response body should be empty; Headers should 
have date, location, etc.)

RESTful Web Services:
Security



46

§ 401 UNAUTHORIZED, states that the user is using 
invalid or wrong authentication token

§ 403 FORBIDDEN, states that the user does not 
have access to the method being used (for 
example: delete access without admin rights)

§ 409 CONFLICT, states a conflict situation when 
executing the method (for example: adding 
duplicate entry)

§ 500 INTERNAL SERVER ERROR, states that the 
server has thrown some exception while executing 
the method

RESTful Web Services:
Security



47

§ A simple Web-based social application:
1. A user visits the home page of an application by 

entering the address in the browser
2. The browser submits an HTTP request to the server
3. The server responds with an HTML document, with a 

form and some links
4. The user enters data in the form and submits
5. The browser submits another HTTP request to the 

server (with the form data)
6. The server processes the request and responds with 

another page

REST: Example Operation



48

§ The cycle continues until the user stops
§ Along the way, there could be numerous exceptions in 

the form of error messages

§ So how does this application relate to REST?
§ What the user types into the browser (point 1) is 

called the Uniform Resource Identifier
§ URI is more general than a URL and refers to a 

resource location or a resource name

§ A URI is an identifier of a resource

REST: Example Operation



49

§ A resource is anything that can be 
identified by a URI

§ In point 1 above, the user entry was a 
resource to a static webpage

§ In point 6, the server processing of data 
submitted via the form is another resource
§ The form used to submit the data has the URI 

of this resource encoded as the value of the 
action attribute of the form element

REST: Example Operation



50

§ The HTML pages returned by the server (points 
3 and 6) are representations of a resource

§ A representation is an encapsulation of the 
information of the resource encoded in a format 
such as XML, JSON, HTML
§ This information could consist of state, data, or mark-

up

§ A resource may have one or more 
representations

REST: Example Operation



51

§ Clients and servers use media types to 
denote the type of representation

§ Two common types are:
§ text/html for HTML format
§ application/x-www-form-urlencoded

for URI-encoded format (used for form
submission)

REST: Example Operation



52

§ Clients use HTTP to submit requests for 
resources and to receive responses:
§ In point 1, the request uses GET to fetch an HTML 

page (which includes a form)

§ In point 4, the submission of the form is achieved with 
a POST containing the data

§ These methods are part of HTTP’s uniform 
interface, which makes communication self-
describing and visible
§ The interface also includes other HTTP methods

REST: Example Operation



53

§ Each representation the client receives 
from the server represents the state of the 
user’s interaction with the application

§ For example, when a user submits a form 
(which may invoke a response from the 
server), the user changes the state of the 
application

REST: Example Operation



54

§ Similarly, when a user is just browsing a 
webpage and clicks on a link (to load another 
page), this also changes the state of the 
application

§ Thus, in this context, HTML is a hypermedia
format allowing links and forms to control the 
application flow and thereby change the state of 
the application

§ This is known as the hypermedia constraint

REST: Example Operation



55

References
§ RESTFUL WEB SERVICES - QUICK GUIDE

§ http://www.tutorialspoint.com/restful/restful_quick_guide.htm

§ RESTful Service Best Practices: Recommendations 
for Creating Web Services, 2012. Fredich, T.
n www.restapitutorial.com

§ RESTful Web Services. Richardson, L. and Ruby, S. 
O’Reilly, 2008.

§ RESTful Web Services Cookbook. Allarmaraju, S. 
O’Reilly, 2010.

§ RESTful Web APIs. Richardson, L. and Amundsen, 
M. O’Reilly, 2013.


